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INTRODUCTION

Technical diagnosis is considered to be one 
of the main methods to reach high effectiveness 
related to preventive maintenance of machinery 
and equipment in production. For that reason, 
there is a range of diagnostic methods used to 
determine a state of equipment, e.g., diagnostic 
without dismantling as one of the most popular 
methods nowadays. The method mentioned al-
lows observing a state of a machine during its 
normal operation without involving any down 
time, and therefore, we can observe an increas-
ing trend in using the method mentioned. Failures 
were identified by different methods, e.g., in [1, 
15, 16]. In this paper, the Artificial Neural Net-
work (ANN) introduced a system that was used to 
solve the problem of intelligent diagnosis of bear-
ing knock faults in Internal Combustion (IC) en-
gines. Namely, ball bearings are integral elements 
in most rotating manufacturing types of machin-

ery. While recognizing defective bearing is quite 
straightforward, discovering the source of defect 
requires advanced signal processing techniques. 
Also, the paper [2] includes a proposal of an au-
tomatic bearing defect diagnosis method based on 
the Swarm Rapid Centroid Estimation (SRCE) 
and Hidden Markov Model (HMM). Moreover, 
other diagnostic methods were used in the paper 
[3]. Based on the facts in the paper, bearings are 
not only critical components in induction motors 
but the bearing failure is one of the most common 
failure modes in these motors. 

Economic losses caused by bearing failures 
can be prevented by implementing health moni-
toring and fault diagnosis of bearings and un-
scheduled maintenance as well. The paper men-
tioned introduces trace ratio linear discriminant 
analysis (TR-LDA) that could be used for dealing 
with high-dimensional non-Gaussian fault data 
for dimensionality reduction and fault classifica-
tion. Furthermore, the paper [4] used the method 

ACOUSTIC CAMERA AS A TOOL FOR IDENTIFYING MACHINERY   
AND EQUIPMENT FAILURES

Ľudmila Pavlikova1, Beata Hricová1, Ervín Lumnitzer1

1 Technical University of Kosice, Letna 9, 04200 Kosice, Slovak Republic, e-mail: ludmila.pavlikova@tuke.sk

Advances in Science and Technology
Research Journal
Volume 12, Issue 1, March 2018, pages 322–328
DOI: 10.12913/22998624/87110

Research Article

ABSTRACT
Sound and noise are as old as humanity itself. They have accompanied civilization, 
evolution, and development for centuries. Music and speech represent not only the 
key elements of human life but also unpleasant feelings of noise that have always been 
an integral part of human existence. As industrial development has required more 
energy, powerful machinery, and equipment, there have been still noisier machines. 
Traffic has grown quickly due to the number and speed of vehicles. For that reason, 
an acoustic camera is used for the dynamic visualization of machinery and equipment 
noise as it analyses the sources of noise in details. Subsequently, qualified measures 
are introduced based on the results of the analysis. The paper considers launching 
another application. According to the proposed methodology, its use in identifying 
machinery and equipment failures and their maintenance is proved. The experiment 
was performed on a four-wheel lawn mower. The primary focus was on the identifica-
tion of failures using an acoustic camera. The previous method allowed to quickly, 
precisely and efficiently identifying the failures in two out of five tested machines.

Keywords: failure, maintenance, visualization, acoustic camera

Received:  2018.01.15
Accepted:  2018.02.01
Published:  2018.03.01



323

Advances in Science and Technology Research Journal  Vol. 12 (1), 2018

that studies the most significant statistical-time 
features estimated from vibration signal. Subse-
quently, it uses an equivalent of the curvilinear 
component analysis, and thus a nonlinear mani-
fold learning technique for compression and visu-
alization of the feature behaviour. The latter ena-
bles to interpret the underlying physical phenom-
enon. Stochastic resonance (SR) has been proved 
to be an effective way to detect a weak signal sub-
merged in heavy background noise. The improve-
ment of the SR approach to enhance the effective-
ness of weak signal detection through a circuitry 
system addresses the paper [5]. Based on the 
presented experimental facts about noise, we are 
able better to understand the correlation between 
noise in an apparatus and its reliability. The main 
advantages of noise measurements could be con-
sidered that the tests are less destructive. Noise 
as a diagnostic tool is presented in [6]. Also, a 
diagnostic system detecting vibration and acous-
tic emission is used in the paper [7]. A vibration 
model of rolling element bearings in a rotor-bear-
ing system for fault diagnosis is introduced in the 
paper [8]. Rolling element bearings are often used 
in rotary machinery, but they also represent frag-
ile mechanical parts. Hence, accurate condition 
monitoring and fault diagnosis for them plays a 
major role in ensuring machinery’s reliable run-
ning. Timely diagnosis and early intervention of 
bearing faults are desirable, but the early fault de-
tection is easily submerged in noise. Mentioned 
noise diagnostic is proposed in paper [9, 14]. An 
original approach for detection and localization 
of faults occurring in Direct Current (DC) ma-
chine was suggested in the article [10]. There was 
described a system for diagnosing DC machines. 
The system performed an analysis of the acoustic 
signals of DC machine. The objection of the paper 
[11] is to estimate the leakage detection level in 
the case that these methods are used for diagnos-
ing single leakages under steady-state operating 
pipeline’s conditions. Technical diagnostic using 
vibroacoustic signals deals paper [12, 13].

The sound is a mechanic undulation that is 
accompanied by oscillation of particles in space. 
The oscillation results in an uneven arrangement 
of particles, i.e., some places contain more and 
some fewer particles. The previous arises from a 
direction of movement. In the case of large as-
sembly of particles, a higher density can be ob-
served. Following the previous fact, based on 
the thermodynamic, acoustic pressure increases. 
Namely, a sound wave means that density and 

pressure changes periodically in time and differ-
ent places as well. Specifically, in one place there 
is the maximum particle density, while elsewhere 
it is happening in a different time.

The previous is confirmed as follows:

𝜉𝜉 = 𝜉𝜉𝜉𝜉 sin(2𝜋𝜋𝜋𝜋 (𝑡𝑡 −  𝑥𝑥𝑐𝑐)) (1)

where: ξ – deviation of a single particle in a di-
mension “x” for a given time unit “t”

 ξm – maximum deviation (typical for 
sound intensity)

 f – sound frequency
 t – time
 x – dimension
 c – speed of sound propagation

Velocity change due to movement of particles 
is represented as follows:

𝑣𝑣 = 𝑣𝑣𝑣𝑣 cos(2𝜋𝜋𝜋𝜋 (𝑡𝑡 −  𝑥𝑥𝑐𝑐)) (2)

where: v  – velocity
 vm – velocity amplitude (vm = ξm.2πf)

Subsequently, we are able to compute acous-
tic pressure:

p = 𝑝𝑝𝑝𝑝 sin (2𝜋𝜋𝜋𝜋(𝑡𝑡 −  𝑥𝑥 
𝑐𝑐 )) (3)

where: Pm – ρ0cvm, if ρ0 = the average density of 
dimension

 Pm – pressure amplitude 

Intensity of sound corresponds to energy 
passing through a surface over time as follows:

I = 1
2 𝜌𝜌0𝑐𝑐𝑣𝑣𝑣𝑣2 =  1

2 𝑝𝑝𝑚𝑚2
𝜌𝜌. 𝑐𝑐

 (4)

The speed of sound also depends on the prop-
erties of dimension. Specifically, it reaches 340 
meters per second in the air (20oC) while it is 
more in the water, i.e., 1440 meters per second.

Although the primary use of an acoustic cam-
era is a dynamic visualization of sound propaga-
tion, the aim of the paper is to show and prove its 
wider use, i.e., the identification of machinery and 
equipment failures. Indeed, a consumer plays the 
key role regarding maintenance machinery and 
equipment as he can determine the length of using 
his products with maximal utility. For that reason, 
it is a regular maintenance that could help to ex-
tend the lifespans of machinery and equipment. 
Particularly, an acoustic camera could shorten a 
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time needed for the identification of failures in-
visible in normal operation. Thus, the analysis of 
our paper is focused on a four-wheel lawn mower 
widely used in households.

Economic methods of Investment Projects 
Evaluation (cost project selection criteria). 

The cost criteria are usually not listed in fi-
nancial literature as they do not evaluate a project 
concerning cash flow, i.e., they evaluate a proj-
ect concerning investment and operating costs. 
Therefore, they have appeared predominantly in 
various technical and engineering publications. 
In fact, this method compares annual costs of 
comparable variants of investment projects, i.e., 
mainly the same scale of production, which en-
sures the investment variant, and the same price. 
The variant with the lowest annual average costs 
is considered to be the most appropriate one. 

Annual average costs are represented as 
follows:
 V=J.i+O+R 
where: R – annual average costs of the variant,
 O – annual amortization,
 i – required (expected) rate of return in %,
 J – investment costs (similar to capital 

expenditure),
 V – other annual operating costs (i.e., total 

operating costs – amortization).

The coefficient of required rate of return rep-
resents minimal required rate of return (respec-
tively the average cost of company’s capital) that 
has to be ensured by a project.  

We consider two variants of investment proj-
ect (two different lawn mowers) that ensure the 
same performance requirements. 

The lawn mower I. – a purchase of the two-
wheel lawn mower in the price of 100 €. Its service 
lifespan is estimated for four years. Estimated an-
nual labour costs are 30 €, material consumption 
is 20 €, other costs are 10 €. Linear amortization 
is considered.

The lawn mower II. – a purchase of the two-
wheel lawn mower in the price of 150 €. Its service 
lifespan is estimated for four years. Estimated an-
nual labour costs are 10 €, material consumption 
is 20 €, other costs are 10 €. Linear amortization 
is considered.

The required rate of return in the case of both 
projects is deemed to be 10%. Annual average 
costs in the case of the lawn mower I. are 95 € 
and 92.5 € regarding the lawn mower II. The most 
suitable and viable project is the lawn mower II. 

based on the comparison of these two options re-
garding annual costs. The previous is also valid, 
even though the project requires higher invest-
ment costs. Moreover, the second project results 
in greater savings in other operating expenses 
compared to the growth of amortization and re-
quired rate of return.

Following our results above, an early diagno-
sis of potential machinery and equipment failures 
(including acoustic diagnostics) can ensure cost 
savings on their repair and maintenance, and thus 
mitigate average annual costs of machinery, lead-
ing to an efficient allocation of investments.

MEASUREMENT METHODOLOGY

The measurement was conducted gradually 
on the five four-wheel lawn mowers of the same 
type from different producers, with different per-
formance parameters, different lifespan, and con-
dition of use. The measurement using an acoustic 
camera was carried out in two ways:
a) Static measurement of the noise source. Re-

garding an engine of lawn mowers working at 
maximum speed, we analysed: acoustic spec-
trum of the emitted sound, spectrogram, and 
acoustic images of dominant frequencies.

b) Measuring the noise source while cutting grass 
as a standard activity (see Fig. 1). Related to 
these measurements, we evaluated: acous-
tic spectrum, spectrogram, a sound film, and 
acoustic images of dominant frequencies. 

Subsequently, based on the spectrograms, 
a sound film and acoustic images of domi-
nant frequencies, we could clearly identify any 
failures/defects and/or non-standard behaviour of 
the lawn mower.

RESULTS

The method of static measurement using an 
acoustic camera was considered to be only slight-
ly effective while identifying failures of tested 
machines. The second method, i.e., lawn mower 
track in front of an acoustic camera, was more 
suitable for the effective results. The measure-
ment was conducted at the distance of 3.3 me-
ters from the start of an acoustic camera track 
(see Fig. 1). Fig. 2 shows the spectrum of emit-
ted noise of the lawn mower AL – KO PowerLine 
4600 BR. As a result, dominant frequencies are in 
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the low frequencies, i.e., to 250 Hz. Subsequent-
ly, the spectrogram of emitted noise was gener-
ated as is shown in Fig. 3.

Following our results from the spectrogram, 
the frequency 5000 Hz results in emitting a high 
level of noise having an impulse character with a 
time between impulses about 40 ms-1 (labeled as 
an ellipse in Fig. 3). However, these impulses dis-
appear in the overall noise, so an observer will not 
find out any problem with a lawn mower. Also, 
the acoustic image of the dominant frequency 
5000 Hz was generated to indicate the source of 
sound propagation (see Fig. 4).

Based on the acoustic image and conducted 
analysis, the noise of this frequency is caused 
by a failure of a lawn mower. Detailed analysis 

showed the seal failure on the cylinder head of 
the engine, and thus compression gas leak that is 
a clear failure of the tested lawn mower. Times 
between impulses (see Fig. 3) are proportion-
al to the speed of the crankshaft of the engine 
in a lawn mower. 

Also, we tested the lawn mower AL – KO 
52 BR Comfort. Fig. 5 shows the spectrogram of 
emitted noise of the lawn mower. Following our 
results from the spectrogram, dominant frequen-
cies are in a range of the low frequencies, i.e., to 
250 Hz. Subsequently, the spectrogram of emitted 
noise was generated as is shown in Fig. 6.

Following our results from the spectro-
gram, the frequencies 270 Hz and 1150 Hz to 
1250 Hz result in a high level of noise. Also, 

Fig. 1. The scheme of a lawn mower track using an acoustic camera

Fig. 2. The spectrum of emitted noise of the lawn mower
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the noise is evenly spread from the source of 
noise, which is the lower part of the engine. 
Subsequently, the acoustic image of the domi-
nant frequency 270 Hz and 1150 Hz to 1250 
Hz was generated to indicate the source of 
sound propagation (see Fig. 7).

Based on the acoustic image and con-
ducted analysis, the noise of this frequency is 
caused by the resonant cover since the centre 
of the source noise moves in time to the lawn 
mower body.

DISCUSSION

The measurements have demonstrated the 
ability to identify the machinery and equipment 
failures based on the visualization noise sources. 
According to the detailed analysis, each failure 
manifests with a different spectral composition 
of noise. Spectrograms show tonal parts, time-
dependent acoustic events proportional to the 
conditions of tested machines. One of the most 

important findings is the ability of the precise 
identification of noise sources. Particularly, 
there should be found a non-standard part of the 
sound on the spectrogram, mark it and then cre-
ate acoustic images. 

The entire identification process is 
characterized by:
 • Short measuring time – a few seconds, re-

spectively several tens of seconds in the com-
plicated cases.

 • Fast data processing and measurement 
evaluation – the identification takes several 
minutes in the case of repeated measurements 
and is dependent on the operator’s experience 
and computer performance.

 • Unambiguous identification of failures – the 
authors identified the failures quite accurate-
ly. In practice, the database of spectrograms, 
spectra, respectively acoustic images corre-
sponding to a particular failure is created by 
repeated measurements. The previous will 
make possible to streamline the entire main-
tenance process. 

Fig. 4. The acoustic image of the dominant frequency 
5000 Hz

Fig. 5. The spectrum of emitted noise of the lawn mower

Fig. 3. Spectrogram of emitted noise
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CONCLUSION

Nowadays, the market has offered a number of 
acoustic cameras and specialized, custom-formed 
microphone arrays, which can be used to identify 
failures. However, the only drawback regarding 
the method is a relatively high price of equipment 
that makes this method applicable only to larger 
amounts of the identified equipment, i.e., larger 
operations. The authors conducted a whole range 
of measurements using an acoustic camera. The 
findings support the fact that the acoustic cam-
era is a perspective tool in the area of predictive 
maintenance as it enables early identification of 
machinery and equipment failures often without 
down time, i.e., its full operation (production 
lines, technological operations, transport equip-
ment). Based on the changes in the spectral com-
position of the sound, it is even possible to track 
an emerging failure, and thus estimate the time 
when it is necessary to perform maintenance. 

The benefits of this non-contact method can 
be used at a variety of devices, even at greater 
distances, where there is no risk to health.

For faster identification of faults or its predic-
tion, it is necessary to create a database of sam-
ples with frequency characteristics of individual 
faults, in addition to experience, which in the 
future may reduce costs and speed up this fault 
detection technology.

Diagnosis of acoustic camera faults has a 
great future ahead, not only in the diagnostics of 
machinery and equipment, but also in other sec-
tors, such as construction, where other methods 
have been used.
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